
11

Chapter 2

2.Making the Most of IRIX

This chapter describes features of IRIX that are useful to the System Administrator.
Administrators coming to a UNIX-based system from other environments will find this
chapter valuable in reducing the amount of time necessary to perform some tasks. Others
may find hints and features that they did not previously know.

IRIX Shell Shortcuts

The following features are provided as part of the IRIX command shells.

Using Regular Expressions and Metacharacters

There are shortcuts available to you when you wish to define large numbers of files or
directories in your commands. These shortcuts are known as “regular expressions.”
Regular expressions are made up of a combination of alpha-numeric characters and a
series of punctuation characters that have special meaning to the IRIX shells. These
punctuation characters are called metacharacters when they are used for their special
meanings with shell commands.

These shortcuts are useful because they minimize keystrokes. While minimizing
keystrokes may seem to be a minor concern at first glance, an administrator who issues
lengthy and complex command lines repeatedly may find these shortcuts a handy and
necessary time-saving feature.

12

Chapter 2: Making the Most of IRIX

The following is a list of the IRIX metacharacters:

The asterisk (*) metacharacter is a universal wildcard. This means that the shell interprets
the character to mean any and all files. For example, the command:

cat *

tells the shell to concatenate all the files in a directory, in alphabetical order by filename.
The command:

rm *

tells the shell to remove everything in the directory. Only files will be removed, though,
since a different command, rmdir(1) is used to remove directories. However, the asterisk
character does not always have to refer to whole files. It can be used to denote parts of
files as well. For example, the command:

rm *.old

will remove all files with the suffix.old on their names.

The single character wildcard is a question mark (?). This metacharacter is used to denote
a wildcard character in one position. For example, if your directory contains the
following files:

file1

file2

file3

file.different

and you wish to remove file1, file2, and file3, but not file.different, you would use the
command:

rm file?

Table 2-1 IRIX Metacharacters

Metacharacter Meaning

* wildcard

? single character wildcard

[] set definition marks

IRIX Shell Shortcuts

13

If you used an asterisk in place of the question mark, all your files would be removed,
but since the question mark is a wildcard for a single space, your desired file is not
chosen.

Square brackets denote members of a set. For example, consider the list of files used in
the example of the single character wildcard. If you wanted to remove file1 and file2, but
not file3 or file.different, you would use the following command:

rm file[12]

This command tells the shell to remove any files with names starting with file and with
the character 1 or 2 following, and no other characters in the name. Each character in the
brackets is taken separately. Thus, if our example directory had included a file named
file12, it would not have been removed by the above command. You can also use a dash
(-) to indicate a span of characters. For example, to remove file1, file2, and file3, use the
following command:

rm file[1-3]

Alphabet characters can be spanned as well, in alphabetical order. The shell does pay
attention to upper case and lower case letter, though, so to select all alphabet characters
within square brackets, use the following syntax:

[a-z,A-Z]

You can use the square brackets in combination with other metacharacters as well. For
example, the command:

rm *[2,3]

removes any files with names ending with a 2 or 3, but not file1 or file.different.

C Shell Shortcuts

The IRIX C Shell (/bin/csh) provides several features that can be used to minimize
keystrokes for routine tasks. Complete information about these and many other features
of the C Shell is available in the csh(1) reference page. Among the features provided are:

 filename completion
This feature is activated with the command:

set filec

14

Chapter 2: Making the Most of IRIX

Filename completion allows you to enter the first character or two of a
command or file name and then press the Escape key to have the shell
complete the name. This is useful when you have long filenames with
many suffixes. If more than one file or directory or command matches
the characters you have given, the shell completes as much as possible
of the name, and then prompts you with a beep for more information.
You can also use the <Ctrl-D> character to select all files or directories
that match your given characters.

 shell scripts This feature allows you to create a program that will be executed by the
shell. This feature is similar to a programming language in that it has a
set syntax and set of instructions, yet it requires no compiler and
produces no object file; it is directly executed by the shell. Many
administrators use this feature for frequently performed procedures that
require some planning and complex execution, such as finding large
files and notifying the owners that such files cannot be kept on the
system for long periods of time. The shell script programming rules are
clearly presented on the csh(1) reference page.

input/output redirection
This feature allows you to direct the output of a command into a file or
into another command as input. You can also direct a command to take
its input from a file. It is often used as part of a shell script, but is
generally used on the command line to string together a series of
commands. For example, consider the command line:

ps -ef | grep commandname

The pipe character directs the shell to use the output of the ps command
as the input to the grep command. The result is that all instances of the
command commandname in the process list are printed on the screen,
saving the administrator the effort of searching through the process
listing.

job control This feature allows you to use a single screen (or shell window) to
manage several programs running simultaneously. It is most useful for
the server administrator who manages the system from a single
character-based terminal.

command aliasing
This feature allows you to create aliases for commonly used command
strings, saving keystrokes. For example, suppose you frequently give
the command:

IRIX Shell Shortcuts

15

ls -CF | more

This command line executes the ls command with certain options and
ensures that if the output is greater than a screenful it will be stopped
until you have read it. However, it would be tedious to type the whole
command each time you wanted to see a directory listing in your
preferred format. Therefore, you should create an alias. You can alias
the above command line to any series of keystrokes you like. You can
even alias it to “ls,” thus bypassing the standard meaning of the ls
command.

When you create the alias, however, be aware that any command that
requires one or more arguments, or one such as ls that may or may not
receive arguments, must have a provision made in the alias for those
arguments. The standard provision made in aliases for possible
arguments is the following regular expression:

\!*

The leading backslash escapes the initial meaning of the exclamation
point to the shell and passes the exclamation point through to the
command line, where it is interpreted by the shell to refer to arguments
given on the aliased command line. The asterisk in the expression
means that all characters typed in as arguments are to be passed
through to the shell. As an example, the line you place in your .cshrc file
to create the example alias is:

alias ls ‘ls -CF \!* | more‘

Then, when you type the command:

ls filename

at your shell prompt, the command is executed as:

ls -CF filename | more

Aliases can be used freely within shell scripts, with filename
completion and full use of regular expressions and output redirection.

command history
The shell maintains a log of your past commands given during this login
session. You can repeat or edit a previously given command to save
keystrokes. The history command shows the numbered log of
commands in order. The first command given in your login session is

16

Chapter 2: Making the Most of IRIX

number 1, the second is number 2, and so on. You can set the number of
commands the shell remembers in your .cshrc file. To execute the most
recent command again, type:

!!

To execute the most recent command beginning with the letter “q,” use
the command line:

!q

And to execute a command by its number in the history, give the
command line:

!n

where n is the number of the previous command you wish to
re-execute.

Tcsh Shell Shortcuts

The /usr/bin/tcsh program is an improved version of the C shell. In addition to the C shell
features listed above, this shell offers many new features. A few of the most useful to
system administrators are:

• Better command line editing using emacs and vi key commands.

• Improved history mechanisms, including time stamps for each command.

• Built-in mechanisms for listing directory contents and for executing commands at
specific times or intervals.

There are many more features implemented in Tcsh, and all of them are covered in the
tcsh(1) reference page.

Bourne Shell Shortcuts

The Bourne shell (/bin/sh) provides fewer features than the C shell, but in its place offers
a level of access to the shell that contains far fewer restrictions and intervening layers of
interface. For example, you can write shell script programs directly from the shell
prompt with Bourne shell. Input and output redirection and command aliasing are
supported with the Bourne shell, but no command history, job control, or filename

IRIX Shell Shortcuts

17

completions are available. For a complete discussion of the Bourne shell and its features,
see the sh(1) reference page.

Korn Shell Shortcuts

The Korn shell was developed to provide the best features of both the C shell and the
Bourne shell. The /bin/ksh program provides the ease of shell programming found in the
Bourne shell, along with the job control, history mechanism, filename completion, and
other features found in the C shell. This shell has changed many of the ways these
features are implemented, and also provides improved command line editing facilities.
See the ksh(1) reference page for complete information on this shell. Useful features
include:

Emacs Editing This mode is entered by enabling either the emacs or gmacs option. To
edit, the user moves the cursor to the point needing correction and then
inserts or deletes characters or words as needed as if the command line
were a text file being edited using Emacs. All edit commands operate
from any place on the line (not just at the beginning).

vi Editing To enter this mode, enable the vi option. There are two typing modes in
this option. Initially, when you enter a command you are in the input
mode. To edit, the user enters control mode by typing ESC, moves the
cursor to the point needing correction, then inserts or deletes characters
or words as needed as if the command line were a text file being edited
using vi.

job control Lists information about each given process (job) or all active processes
if the job argument is omitted. The -l flag lists process ID numbers in
addition to the normal information. The -n flag only displays jobs that
have stopped or exited since last notified. The -p flag causes only the
process group to be listed. See the ksh(1) reference page for a description
of the format of the job argument.

The bg command puts each specified process into the background. The
current process is put in the background if job is not specified.

The fg command brings each process specified to the foreground.
Otherwise, the current process is brought into the foreground.

18

Chapter 2: Making the Most of IRIX

General IRIX Shortcuts

The following commands are provided by IRIX independent of any shell.

Displaying Windows on Alternate Workstations

You can invoke a graphical utility or application on a remote networked workstation and
direct the window and all input and output to your own local workstation if you desire.
This is very convenient when you wish to perform maintenance on remote workstations
from your own desk. The program you invoke will run on the remote workstation and
the window will be displayed on the specified display workstation.

First, use rsh(1), rlogin(1), or telnet(1) to log in to the remote workstation with whatever
privilege level is required to perform the maintenance on that system. In some cases, this
may be as simple as the guest account, or you may have your own user account on the
system, or you may require root permission. Choose the level of access appropriate to
your task. Then, issue the command:

setenv DISPLAY local_workstation:0

The name of the workstation where the window is to be displayed is substituted for
local_workstation. The name of the local workstation must be found in the /etc/hosts file of
the remote system, where the program is actually running.

Next, invoke the desired utility or application on the remote system and the window will
display on your local workstation. All input and output will be handled through your
local workstation. Remember that due to restrictions of network carrying capacity,
response time in the program may be slower (in some cases, much slower) than usual.

When you are finished, exit the display program normally. You must also reset the
display on the remote station, or all susequent window applications will continue to
appear on the local workstation. On the remote system, use the command

setenv DISPLAY :0

to reset the display back to the remote system monitor.

General IRIX Shortcuts

19

Creating a Custom Shell Window

IRIX allows you to create a shell window using any colors you like from the palette on
your graphics workstation. You may also select any font you prefer from the font set on
your system. The xwsh(1) command creates the shell window, and the options to this
command control the various fonts, colors, and other features available to you. The
command shell used in the window is taken by default from your /etc/passwd file entry
or it can be specified on the command line according to the instructions in the xwsh
reference page.

For a complete list of the features available with xwsh(1), see the xwsh reference page. The
most commonly used features are described here in the following examples.

To create a simple shell window with a dark gray background and yellow text, issue the
following command:

xwsh -fg yellow -bg gray40 &

The above command generates a new window and a new shell using the colors specified.
The window will use the default font selection and window size, since these attributes
were not specified. The command that created the shell was placed in the background,
so the shell does not tie up the window where you gave the command. You can always
place a command in the background by adding the ampersand character (&) to the end
of the command line. For more information on placing processes in the background, see
the csh(1) reference page.

There are 100 shades of gray available. Gray0 is the darkest, and is virtually black.
Gray100 is the lightest and is virtually white. The effect of selecting foreground (text) in
yellow and background in gray40 is similar to yellow chalk on a gray chalkboard. For a
complete list of the available colors in your palette, use the colorview(1) command. This
brings up a window with the list of colors in a scrollable list, and a display window to
show a patch of the currently selected color.

In the next example, we change the colors to black on a sky blue background (high
contrast between the foreground and background makes reading the screen easier), and
we add a specification for the size of the window.

xwsh -fg black -bg skyblue -geometry 80x40 &

The first number in the geometry option is 80, indicating that the new shell window
should be 80 characters wide (this is the default). The second number indicates the
desired number of lines on the screen, in this case 40. Once again, the xwsh command has

20

Chapter 2: Making the Most of IRIX

been placed in the background by adding the ampersand character to the end of the
command line.

You can make your new shell come up on your desktop as an icon by adding the -iconic
flag to any xwsh command.

To select a font other than the default, you can use the on-screen font selection utility, or
you can specify the font on the command line. It is a great deal easier to use the on-screen
font selection utility, as you must specify a great number of attributes for the font on the
command line. Also, it frequently takes a great number of selections before you settle on
a font, a weight (regular or bold, condensed or normal) and a font size that appeals to
you. Using the on-screen font utility, you can preview what each selection will look like
on your windows.

Once you have made your selections, you can copy and paste the font selection
information and the rest of your xwsh command into a shell script file for convenient
future use. For example, here is an xwsh command line that specifies the IRIS-specific font
haebfix in a medium weight with normal spacing, 15 pixels tall. The remaining
information is generated by the font selection utility for the shell.

xwsh -iconic -fg yellow -bg grey40 -geometry 80x40 -fn \
-sgi-haebfix-medium-r-normal--15-150-72-72-m-90-iso8859-1 &

Note that in your shell script, the above command appears all on one line. Due to
formatting constraints, the command is broken across two lines in this example.

For complete information on using the font selection utility in xwsh and the xfontsel(1)
command, see Chapter 2 of the IRIS Utilities Guide.

Finding and Manipulating Files Automatically

The IRIX system provides several tools for manipulating large numbers of files quickly.
Some of the most common are described below:

• The find(1) utility locates files and can invoke other commands to manipulate them.

• The sed(1) program edits files using pre-determined commands.

• Many other programs have recursive options, with which you can quickly operate
on files that are in many levels of subdirectories.

General IRIX Shortcuts

21

Using find to Locate Files

The find(1) command is used to find files and possibly execute commands on the files
found. It starts at a given directory and searches all directories below the starting
directory for the specified files. A basic find command line looks like this:

find . -name <filename> -print

This command searches the current directory and all subdirectories downward from the
current directory until it finds all matches to the <filename> and then displays their
locations on your screen. You can also use regular expressions (see “Using Regular
Expressions and Metacharacters” on page 11) in your searches.

The following command line searches for files that have been changed after the time
/tmp/file was last modified. If you use touch(1) to create /tmp/file with an old date, this
command can help you find all files changed after that date.

find / -local -newer /tmp/file -print

You can use find to locate files and then to run another command on the found files. This
example shows how to locate a file in a user’s directory:

cd /usr/people/trixie

find . -name ’missingfile’ -print

In this example, the period (.) indicates the current directory, the -name option indicates
that the next argument in quotes is the name of the file you are looking for, and the -print
option tells find to display the pathname of the file when the file is located.

The next example shows how to change the permissions on all the files in the current
directory and in all subdirectories:

find . -name ’*’ -local -exec chmod 644 {} \;

The option immediately following the find command is a period (.). This indicates to find
that the search is to begin in the current directory and include all directories below the
current one. The next flag, -name, indicates the name of the files that are being found. In
this case, all files in the directory structure are selected through the use of the asterisk
metacharacter (*). See “Using Regular Expressions and Metacharacters” on page 11 for
more information on metacharacters and regular expressions.

The -local option indicates to find that the search is limited to files that physically reside
in the directory structure. This eliminates files and directories that are mounted via the

22

Chapter 2: Making the Most of IRIX

Network File System (NFS). The -exec option causes find to execute the next argument as
a command, in this case chmod 644. The braces, { }, refer to the current file that find is
examining.

The last two characters in the command line are part of the chmod command that will be
executed (with the -exec option) on all files that match the search parameters. The
backslash (\) is necessary to keep the shell from interpreting the semicolon (;). The
semicolon must be passed along to the chmod process. The semicolon indicates a carriage
return in the chmod command.

The find command has several other useful options:

-inum n Locate files by their inode number (n) instead of their name.

-mtime n Identify files that haven’t been modified within a certain amount of time
(n).

-perm [-]||onum
Identify files with permissions matching onum, an octal number that
specifies file permissions. See the chmod(1) reference page. Without the
minus sign (-), only file permissions that match exactly are identified.

If you place a minus sign in front of onum, only the bits that are actually
set in onum are compared with the file permission flags.

-type x Identifies files by type, where x specifies the type. Types can be b, c, d, l,
p, f, or s for block special file, character special file, directory, symbolic
link, FIFO (a named pipe), plain file, or socket respectively.

-links n Matches files that have n number of links.

-user uname Identifies files that belong to the user uname. If uname is a number and
does not appear as a login name in the file /etc/passwd, it is interpreted as
a user ID.

-group gname Identifies files that belong to the group gname. If gname is a number and
does not appear in the file /etc/group, it is interpreted as a group ID.

-size n [c] Identifies files that are n blocks long (512 bytes per block). If you place a
c after the n, the size is in characters.

-ok cmd Works like -exec, except a question mark (?) prompts you to indicate
whether you want the command (cmd) to operate on the file that is
found. This is useful for such operations as selectively removing files.

General IRIX Shortcuts

23

Using find to Copy Directories or Directory Hierarchies

The find and cpio commands can be used to easily and safely copy a directory or a
directory hierarchy as long as the user has permissions to access the directory. To copy a
directory with all its files, or an entire hierarchy of directories and their files, use
commands like the following:

mkdir new_directory_name

cd the_directory_you_want_to_copy

find . -print | cpio -pdlmv new_directory_name

This command sequence preserves the symbolic links in the new directory as well as
transparently cross file system boundaries.

Automated Editing with sed

You can use sed(1), the Stream Editor, to automate file editing. The sed command follows
an editing script that defines changes to be made to text in a file. The sed command takes
a file (or files), performs the changes as defined in the editing script, and sends the
modified file to the standard output. This command is fully described in the IRIX
Development Option documentation and in the sed(1) reference page, which is included
in your IRIX distribution. The IRIX Development Option is available for separate
purchase from Silicon Graphics.

Recursive Commands Under IRIX

Recursive commands can save you a lot of time. For example, to change the ownership
of all the files and directories in a directory recursively, and all of the files and directories
in all of the subdirectories below that, you can use the recursive option with chown(1):

chown -R username directory

Some of the other commands in the IRIX system that have recursive options are:

ls -R

rm -r

chgrp -R

24

Chapter 2: Making the Most of IRIX

If you want to use a particular command recursively, but it does not have a recursive
option, you can run the command using find. See “Using find to Locate Files” on page 21.

Note that using recursive options to commands can be very dangerous in that the
command automatically makes changes to your files and file system without prompting
you in each case. The chgrp command can also recursively operate up the file system tree
as well as down. Unless you are sure that each and every case where the recursive
command will perform an action is desired, it is better to perform the actions
individually. Similarly, it is good practice to avoid the use of metacharacters (described
in “Using Regular Expressions and Metacharacters” on page 11) in combination with
recursive commands.

Automating Tasks with at(1), batch(1), and cron(1M)

You can use the at(1), batch(1), and cron(1M) utilities to automate many of your usual
tasks, both as an administrator and as a user. These utilities perform similar functions.
All execute commands at a later point in time. The difference between the commands is
that at executes the given command at one specific time; cron sets up a schedule and
executes the command or commands as often as directed, according to the schedule; and
batch executes the commands when system load levels permit the execution.

at(1) Command

If you have a task to process once at a later point in time, use at. For example, if you wish
to close down permissions on a public directory at midnight of the current day, but you
do not need to be present when this occurs, you could use the command string:

at 2400 July 14

chmod 000 /usr/public

<Ctrl-D>

It is required that the at command itself and the date and time of the command be placed
alone on a line. When you press <Return>, you do not see a prompt; at is waiting for
input. Enter the command to be executed just as you would type it at a shell prompt.
After entering the command, press <Return> again and enter <Ctrl-D> to tell at that no
more commands are forthcoming. You can use a single at command to execute several
commands at the appointed time. For example, if you want to close the public directory
and change the message of the day to reflect this closure, you can create the new message
of the day in the file /tmp/newmesg, and then issue the following command string:

General IRIX Shortcuts

25

at 2400 July 14

chmod 000 /usr/public

mv /etc/motd /etc/oldmotd

mv /tmp/newmesg /etc/motd

<Ctrl-D>

By default, any output of commands executed using at is mailed to the executing user
through the system electronic mail. You can specify a different location for the
disposition of output by using the standard output redirects, such as pipes (|) and file
redirects (>). See your command shell documentation for a complete description of
redirecting the standard output.

For complete information on the at command, see the at(1) reference page.

batch(1) Command

The batch command works just like the at command, except that you do not specify a time
for the command or commands to be executed. The system determines when the overall
load is low enough to execute the commands, and then does so. As with all other cron
subsystem commands, the output of the commands is mailed to you unless you specify
otherwise. batch is useful for large CPU-intensive jobs that slow down the system or
cripple it during peak periods. If the job can wait until a non-peak time, you can place it
on the batch queue until the system executes it. For complete information on the batch
command, see the batch(1) reference page.

cron(1M) Command

If you desire to have a command executed regularly on schedule, the cron command and
subsystem provide a precise mechanism for scheduled jobs. The at and batch commands
are technically part of the cron subsystem and use cron to accomplish their tasks. The cron
command itself, though, is the most configurable command of the subsystem.

You use cron by setting up a crontab file, where you list the commands you would like to
have executed and the schedule for their execution. Complete information on setting up
your crontab file is available in the cron(1M) and crontab(1) reference pages.

The cron facility is useful for scheduling network backups, checking the integrity of the
password file, and any other scheduled tasks that do not require interaction between you
and the system. By default, cron mails the results or output of the command to the user

26

Chapter 2: Making the Most of IRIX

who submitted the crontabs file, so if you use cron to schedule something like a pwck(1M),
the results of the test are mailed to you and you can interpret them at your convenience.

Note that you must restart cron after each change to a crontabs file, whether made through
the cron utility or the at command, for the changes to take effect.

The /etc/nologin File

The /etc/nologin file prevents any user from logging in. This feature of the login(1)
program is designed to allow the system administrator to have the system running in full
multiuser mode, but with no users logged in. This is useful when you wish to perform
complete backups of the system or when you want to do some testing that may cause the
operating system to halt unexpectedly. Of course, it is always best to do this sort of work
during non-peak system usage hours.

To disable logins, simply create a file called nologin in the /etc directory. (You must be
logged in as root to create files in /etc.) In addition to disallowing logins, the login program
will display the contents of /etc/nologin when it denies access to the user. To allow logins
again, simply remove the /etc/nologin file. A suggested format for the message in
/etc/nologin is:

The system is unavailable for a few moments while we perform some

routine maintenance. We will be done shortly and regret any

inconvenience this may cause you. -Norton

Using Mouse Shortcuts

The system hardware for graphical workstations (and some X-terminals) can provide
you with shortcuts. These may not be available to server administrators who rely solely
on character-based terminals for their administration. Using the graphics console of your
system, you can cut and paste between windows without using pull-down or pop-up
menus of any sort. Using the pop-up menu, you can manipulate your windows
completely.

Note that you can customize the action of your mouse buttons. All examples in this
section assume the default mouse button meanings are being used. If you have modified
your mouse action, you must allow for that modification before you use these
techniques.

Using Mouse Shortcuts

27

For complete information on using the pop-up windows, see your IRIS Essentials book,
either in hard copy or on screen through the IRIS InSight software package.

Using the Mouse to Copy and Paste Text

The most common mouse shortcut is to cut, copy, and paste between windows on your
screen. Here is how you do it:

1. Find the cursor controlled by your mouse on your screen. It should appear as a
small arrow when it is positioned in the working area of one of your windows, or as
an “X” when it is positioned on your background screen, or as some other figure
when it is positioned on the frame of a window or in the working area of an
application’s window. If you can’t locate the cursor immediately, move the mouse
around a bit and look for motion on your screen. You should find the cursor easily.

2. Place the cursor at the beginning of the text you wish to paste between windows
and press the leftmost key on the top of the mouse. Now, keeping the mouse button
depressed, move the cursor to the end of the text you wish to paste. The intervening
area of the window changes color to show the selected text. If you are selecting a
large section of text, it is not necessary to move the cursor over every space. You
may move the cursor directly to the end point and all intervening text will be
selected. It is not possible to select “columns” of text or several disconnected pieces
of text at once. When you have moved the cursor to the desired end point, release
the mouse button. The text remains highlighted.

3. Now move the cursor to the window you want to paste the text into and make
certain the window is ready to receive the pasted text. For example, if you are
pasting a long command line, make certain that there is a shell prompt waiting with
no other command already typed in. If the pasted matter is text into a file, make
certain that the receiving file has been opened with an editor and that the editor is in
a mode where text can be inserted.

4. To paste the text, place the cursor in the receiving window and press the middle
mouse button once quickly. Each time you press the middle button, the selected text
will be pasted into the receiving window. Sometimes it takes a moment for the text
to appear, so be patient. If you press the button several times before the text
appears, you will paste several copies of your text.

5. You can also paste your selected text to the bottom of a window (including the
window from which you selected the text). Press the rightmost mouse button while
the cursor is in that window and select the send option from the pop-up menu that
appears.

28

Chapter 2: Making the Most of IRIX

The text you originally selected remains selected until you select new text somewhere
else or until you place the cursor back in the original window and click once on the
leftmost mouse button.

Using the Mouse to Create a New Shell Window

If you need a new shell window, you can use the mouse to create one. Follow these steps:

1. With the cursor in a shell window, press the rightmost button on your mouse. A
pop-up menu appears:

Figure 2-1 Shell Pop-Up Menu

2. The last item on the pop-up menu is the clone option. There is a small triangle to the
right of this option. This triangle indicates that there are more sub-choices available
in another pop-up menu. While keeping the button on the mouse depressed, move
the mouse down until the clone option is highlighted and the sub-menu pops up,
showing various shell window cloning options. These options create another shell
window functionally identical to the one in use. This is why the option is called
cloning. The text and background colors of the current window are carried forward
to the cloned window, and the selections in the sub-menu specify the number of
lines in the new window. You can choose to have the same number of lines in the
cloned window as in the current window, or to have 24, 40, or 60 lines.

Figure 2-2 Shell Window Cloning Submenu

Creating New Reference Pages

29

3. Select the size you want by moving the mouse down to highlight each option and
releasing the mouse button when the option you desire is highlighted. The new
window will appear on your screen presently. You may repeat this process as often
as you like on any shell window.

Creating New Reference Pages

Reference pages are online reference manual entries. A full set of reference pages for the
programs, utilities, and files in the standard IRIX distribution is provided on-line, and
these pages are available through the man(1) command. In addition, you can create your
own custom reference pages using the following procedure. Any time you create a script,
utility, program, or application for your users, you should also create a reference page.
This provides a convenient way for your users to learn to use your new tools, and also
makes future maintenance easier.

Not all sites will have the optional Documenter’s Workbench software product installed,
but you can create a facsimile of a reference page using only the text editor of your choice.
See the following section for details.

Creating a Pure-Text Reference Page using vi

Note: To create a pure-text reference page without Documenter’s Workbench (no
embedded nroff(1) commands that would format the text) simply use the vi editor (or the
editor of your choice) and document your script or program according to the style found
in the standard reference pages. Name your reference page file after the script or program
it documents with the suffix ‘‘.l’’ at the end of the file name to designate the page as a local
reference page.

Note: Use the letter “l” as your suffix, not the numeral one “1.”

When you have completed your reference page, you must place it in the /usr/man
directory structure for the man(1) command to be able to display the new page. Place the
reference pages in a local directory, such as /usr/man/manl. (Again using the character ‘‘l’’
to designate local reference pages.) If it does not already exist, create the directory with
this command (you must be logged in as root):

mkdir /usr/man/manl

30

Chapter 2: Making the Most of IRIX

Long reference pages should be packed to save disk space. Use the pack(1) command to
pack the text file into a more compact form. For example:

pack program.1
mv program.1.z /usr/man/manl/program.z

Note: The man program automatically unpacks the pages for reading.

Individual System Monitoring Tools

IRIX provides a set of detailed programs for use in assisting you and your customer
support provider in debugging potential system problems. This software is briefly
described here. Complete documentation is available in the relevant reference pages and
through the help system files and release notes distributed with the software. The
savecore, icrash, fru, and sysmon software works together to provide a picture of what
happens to your system in an error condition that results in an operating system crash.

The savecore Utility

Your system does not automatically save the image of system memory at each system
crash. When the system does store such an image, it is stored in a file called
/var/adm/crash/vmcore.N, where N is a sequential number assigned to the most recent core
file. The savecore command has a chkconfig option that can be turned on or off depending
on your needs. Here is what happens under the two possible conditions:

savecore is on The system saves the core dump. When the core dump has been saved,
if a dump is successful, it will then run icrash on the core dumps that
have been saved.

savecore is off A core dump will not be saved by the system; however, icrash is still run
on /unix and /dev/swap in order to get a report of what happened when
the machine crashed. In this case, systems do not have to use the disk
space on a core dump in order to get a report.

Two report files are created when icrash runs, with N being the bounds number for the
core dump:

analysis.N An analysis of the core dump is created containing items of interest,
such as the putbuf dump, fru information, stack traces, and so on. This is
a verbose description of what happened when the system crashed, and

Individual System Monitoring Tools

31

it is meant to be used to perform a preliminary analysis of the system
before any hardware or software changes are made. See the icrash(1M)
reference page for more information.

 summary.N The summary report contains the panic string, the crash time, and the fru
information in one file for availmon. See the availmon(1M) reference page
for more information.

The icrash Utility

The icrash(1M) utility interactively generates detailed kernel information in an
easy-to-read format. The icrash command also provides the ability to generate reports
about system crash dumps created by savecore(1).

Depending on the type of system crash dump, icrash can create a unique report that
contains information about what happened when the system crashed. The icrash
command can be run on both live systems or with any namelist file and core file specified
on the command line. The namelist file must contain symbol table information needed
for symbolic access to the system memory image being examined.

Each version of icrash is specific to the OS release that it came from, and will not work
on any other OS release. Do not copy icrash to any other IRIX system unless the OS
versions are identical (including patch levels). Running icrash on a live system can
sometimes generate random results, as the information being viewed is volatile at the
time it is displayed.

A brief list of some of the functionality that icrash offers:

• System crash reports created on system panics

• Field replacement unit (FRU) information provided with each crash on eligible
hardware

• Direct access to a broad list of kernel structures

• Disassembly of kernel functions

• Documented set of commands (see the help system within icrash)

• Command line editing and history

32

Chapter 2: Making the Most of IRIX

The fru (Field Replacement Unit) Analyzer

The fru (Field Replacement Unit) command (described fully in the fru(1M) reference
page) displays field replacement unit analysis on Challenge L and XL, Onyx L and XL,
and Power Challenge and Power Onyx systems only. The program considers the
hardware state during an error situation and attempts to determine if the error results
from faulty hardware. The analysis is based on the hardware error state created in the
kernel crash dump. If no hardware error state is dumped, no fru analysis will be
displayed.

Each board will be analyzed separately based on the hardware error state. After the
analysis is completed, the board (or boards) with the highest confidence levels will be
displayed. Currently the boards analyzed include the IO4, MC3, IP19, and IP21. Note
that you should also check the version of fru output from release to release, because later
versions may report a different analysis.

When a confidence level is displayed, it is based on the amount of confidence that the fru
analyzer has in the board listed as being the problem. Note that there are only a few
levels of confidence, and it is important to recognize what the percentages mean:

10% The board was witnessed in the hardware error state only.

30% The board has a possible error, with a low likelihood.

40% The board has a possible error, with a medium likelihood.

70% The board has a probable error, with a high likelihood.

90% The board is a definite problem.

95% The board is a definite problem, an exact error match.

There is a possibility of multiple boards being reported, so the field engineer must be
cautous when deciding to replace boards. For example, if two boards are reported at
10%, that is not enough confidence that the boards listed are bad. If there is one board at
70% or better, there is a good likelihood that the board listed is a problem, and should be
replaced. Boards at 30% to 40% are questionable, and should be reviewed based on the
frequency of the failure of the specific board (in the same slot) between system crashes.

The objective is to uncover real hardware problems, rather than to replace boards at
random. Each icrash report for each kernel core dump on an eligible system will have a
fru analysis in it, which should be reviewed by field engineers before any boards are
replaced.

Individual System Monitoring Tools

33

Below are some fru output examples. Please note that each fru command output below
comes from a unique core dump. Your output is likely to vary significantly:

>> fru

FRU ANALYZER (2.0.1):

++ PROCESSOR BOARD

++ IP21 board in slot 2: 40% confidence.

++ END OF ANALYSIS

>> fru

FRU ANALYZER (1.6.5):

++ MEMORY BOARD

++ MC3 board in slot 1: 70% confidence.

++ END OF ANALYSIS

>> fru

FRU ANALYZER (1.6.5):

++ CPU slice 3 (CC CHIP)

++ and/or Integral component (A CHIP)

++ on the IP19 board in slot 5: 40% confidence.

++ CPU slice 3 (CC CHIP)

++ and/or Integral component (A CHIP)

++ on the IP19 board in slot 7: 40% confidence.

++ CPU slice 2 (CC CHIP)

++ and/or Integral component (A CHIP)

++ on the IP19 board in slot 9: 40% confidence.

++ CPU slice 3 (CC CHIP)

++ and/or Integral component (A CHIP)

++ on the IP19 board in slot 11: 40% confidence.

++ END OF ANALYSIS

>> fru

FRU ANALYZER (2.0.1): No errors found.

34

Chapter 2: Making the Most of IRIX

Viewing Your System Log With sysmon

The sysmon utility is part of the Desktop System Monitor. It can be launched from the
toolchest’s System menu by selecting “View System Log.” You see a window similar to
that shown in Figure 2-3:

Figure 2-3 The sysmon System Log Browser

You can select View, Filter and Sort options through the pull-down menus on this
window. Your selections are saved in your $HOME/.sysmonrc file. For additional
information on these options, please consult the on-line help available through this
window or the sysmon Release Notes.

The sysmon utility allows a user to browse the system log file (/var/adm/SYSLOG). The 8
SYSLOG priorities (see the syslog(3B) reference page) are simplified into 4 priority levels.

Monitoring Systems with Availmon

35

The following table shows how SYSLOG priorities map into the sysmon simplifed
priority scheme:

Monitoring Systems with Availmon

The availability monitor (described completely in the availmon(5) reference page) is a
software package that together with icrash and the FRU analyzer, provides a technology
platform for system availability and diagnostic data gathering and distribution.

The availmon system collects system availability information and crash diagnosis
information. The availability information can be used to evaluate system reliability and
availability. The crash diagnosis information is an automated aid to debugging.

The availmon software is embedded in the system boot and shutdown processes. The
software is capable of differentiating controlled shutdowns, system panics, system
hangs, power cycles, and power failures. Your system’s uptime is estimated by a daemon
process, and diagnostic information is collected from icrash(1M), /usr/adm/SYSLOG and
sysmon(1M), hinv(1M), versions(1M), and gfxinfo(1G). All aspects of availmon operation are
fully configurable.

You can choose to participate in a system availability database that assists Silicon
Graphics support in providing reliable service. All availability and diagnostic data for
cooperating systems will be maintained in an SGI database. Access to that database

Table 2-2 The sysmon Priority Table

sysmon Priority SYSLOG Priority Numerical Priority

CRITICAL LOG_EMERG 0

CRITICAL LOG_ALERT 1

ERROR LOG_CRIT 2

ERROR LOG_ERR 3

WARNING LOG_WARNING 4

WARNING LOG_NOTICE 5

INFO LOG_INFO 6

INFO LOG_DEBUG 7

36

Chapter 2: Making the Most of IRIX

provides overall reliability data, and specific histories for individual participating
systems. This is the primary function of availmon.

Registering and Configuring availmon

You must issue the amregister command to set up availmon configuration, turn on
autoemail, and register your system with the Silicon Graphics Availmon Database.

To register your system, log in as root and issue the command:

/usr/etc/amregister -r

Depending on your system type, you may need to enter the serial number of your system
by hand. See the amregister(1M) reference page for further information.

The availmon software is enabled through the chkconfig(1M) command, described in
“Checking Options With chkconfig” on page 63. The flags are:

availmon Controls the activation of the entire availmon software package. By
default, this option is on.

The other configuration flags are set using the amconfig(1M) utility, which is similar to
chkconfig, but uses a different record file. There are four flags:

autoemail Enables automatic distribution of reports. By default, this option is off,
but is turned on by amregister.

hinvupdate Enables a daemon that checks for changes reported by hinv and gfxinfo.
By default, this option is on for large systems and off for all others.

shutdownreason
Directs the system to query the Superuser for a reason for each system
shutdown. By default, this option is on for large systems and off for all
others.

tickerd Enables the daemon that monitors system uptime. By default, this
option is on for large systems and off for all others.

There is also an e-mail list configuration file, /var/adm/avail/config/autoemail.list, used to
control the report type, e-mail format, and e-mail addresses for availmon reports. The
e-mail list is edited and maintained through the amconfig(1M) command. By default, this
file is configured to send diagnosis reports to Silicon Graphics.

Monitoring Systems with Availmon

37

For sites with multiple systems participating, the amconfig command can be executed on
one system to set up a common email configuration file (/var/adm/avail/autoemail.list), and
then this file can be copied onto all participating systems. Then run amregister -r on each
system.

Configuring an availmon Site Log File

If a site log file for one or more systems is desired, a pseudo e-mail alias can be created.
This alias pipes availability reports to amreceive whose output is then appended to the site
log file. This procedure should be done before registering all the systems, because initial
availability reports will be sent out when registering.

After setting up availmon, amreport can be executed on each system to view the
availability statistics and reports for that system, or it can be run with the site log file as
input to view overall availability statistics for all systems, and availability reports for any
system.

If a site log file is desired, perform the following steps in order:

1. Create an e-mail alias on one system and pipe all availability reports to amreceive.
For example, if the site logfile is to be /disk/amrlog, add this line to the mail server
system’s /etc/aliases file:

amrlog: “| /var/adm/avail/amreceive >> /disk/amrlog”

and then run the newaliases command to set up this e-mail alias.

2. Then, run the amconfig command on the mail server system to configure the
standard e-mail lists. For our example log file, add the entry:

availability(text): amrlog

Then, copy the resulting /var/adm/avail/config/autoemail.list on this system to the rest
of the systems at your site.

3. Run amregister to register all your systems as described above in “Registering and
Configuring availmon” on page 36.

4. Now the command:

amreport -s /disk/amrlog

shows the overall statistics, system statistics, and individual availability reports for
all participating systems.

38

Chapter 2: Making the Most of IRIX

Running availmon On Other Systems

The availmon software is part of your standard IRIX distribution in this release. For
previous releases of IRIX, software patches are available from your customer support
provider. The software on your distribution will not work with previous releases of IRIX.

Administering availmon

Three examples are provided to illustrate the administration of availmon. One is for
general customers that send reports out automatically; the other two are for secure sites
with and without internal report sending.

Using availmon with Automatic Reporting

If availmon is installed on a single system, reboot the system after installation. Then, run
amregister without any argument to register and configure the e-mail lists. This will turn
on autoemail and send registration reports to all configured addresses when complete.
If your system does not have an IP19, IP21, IP22, or IP25 processor, amregister prompts
you to input your system’s serial number manually.

The shutdownreason and tickerd configuration options can be turned on or off anytime.
The default autoemail.list is:

availability(compressed,encrypted):

availability(compressed):

availability(text):

diagnosis(compressed,encrypted): availmon@csd.sgi.com

diagnosis(compressed):

diagnosis(text):

In addition, you may want to add the following entries:

availability(text): <local_sysadmin>

diagnosis(compressed,encrypted): <local_support>

In the above optional entries, replace the strings <local_sysadmin> and <local_support>
with the appropriate e-mail addresses for your system administrator and Silicon
Graphics support representative, respectively.

If encrypted data in email is prohibited by law at your site, move addresses in
“(compressed,encrypted)” entries to “(compressed)” entries.

Monitoring Systems with Availmon

39

Using availmon at Secure Sites with Internal Report Mailing

If your site is under security restrictions, you may use the following procedures to set up
and use availmon. The setup procedure is similar to that found in “Registering and
Configuring availmon” on page 36, except that the addresses outside your site should be
deleted.

After your system administrators receive availmon reports, they can check the latest
diagnosis report, /var/adm/crash/diagreport on the system just rebooted, delete any
sensitive data and use amsend to mail the filtered report to availmon@csd.sgi.com and any
Silicon Graphics support address they require. If the diagnosis report contains any
ICRASH, SYSLOG, HINV, VERSIONS, or GFXINFO data, use the command:

amsend -i -z -x availmon@csd.sgi.com ...

to mail the report. If there is no such data in the report, use the command:

amsend -d -z -x availmon@csd.sgi.com ...

If encrypted data in e-mail is prohibited by law at your site, remove -x from the command
line.

Using availmon at Secure Sites without Report Mailing

If outisde report mailing is not possible at your site, no special actions need to be taken
to use availmon. However, for those platforms not using IP19, IP21, IP22, and IP25
processors, amregister should still be run and then you should turn off autoemail so that
reports generated on these systems will not be sent automatically. The shutdownreason
and tickerd options can also be turned on or off as you choose.

Since no external report is mailed after the system reboots, system administrators need
to check if the system has been down, and then check the report files to determine the
reason. If the system crashes more than once before checking, old reports will be
overwritten by the new ones (core dumps and icrash reports will be kept until removed
explicitly). Therefore, internal report mailing is recommended for secure sites.

Diagnosis reports can be sent to Silicon Graphics using amsend. See the section titled
“Using availmon at Secure Sites with Internal Report Mailing” on page 39. Another
method is to run amconfig to configure standard e-mail lists so that when reports need to
be sent, amnotify can be used to send reports according to those lists.

40

Chapter 2: Making the Most of IRIX

availmon Reports

There are two types of reports produced by availmon: availability and diagnosis.
Availability reports consist of system start time, stop time, stop reason, uptime, re-start
time, and a summary of the likely reason for any system crash (where relevant). A
standard availability report is shown here:

------------------------------ whizkid ----------------------------

Report Version 0.1

Internet Address whizkid

Reason for Shutdown Hang

Started at Mon Oct 3 16:56:08 1994

Stopped at Unknown instant

Uptime 4304 minutes (2 days 23 hrs 44 mins)

Press <enter> to display summary ...

When you press <Enter>, you see information similar to the following:

======================= SUMMARY for whizkid ==========================

Controlled Shutdowns ... 0

Hangs 1

Panics 0

Average Uptime 2189 minutes (1 day 12 hrs 29 mins)

Least Uptime 74 minutes (1 hr 14 mins) (*)

Most Uptime 4304 minutes (2 days 23 hrs 44 mins)

Availability 0.7870%

Logging started at Mon Oct 3 16:56:08 1994

System has been up for . 74 minutes (1 hr 14 mins)

Last boot at Tue Oct 24 23:03:44 1995

==

Diagnosis reports additionally contain icrash analysis report (including the FRU analyzer
result), important syslog messages, and system hardware/software configuration and
version information.

Availability information is permanently stored in /var/adm/avail/availlog. Files in
/var/adm/avail are maintained by availmon and should not be deleted, modified, or moved.
The most recent availability and diagnostic reports are stored in /var/adm/crash/availreport
and /var/adm/crash/diagreport, and should be treated comparably to core dumps.

Monitoring Systems with Availmon

41

Mailing availmon Reports

There are two ways to configure the sending of availmon reports: automatic or manual. If
you select automatic mailing, you can configure any number of recipients for each type
of report. The recommended configuration is to send diagnosis reports to the Silicon
Graphics Availmon Database. Also, send diagnosis reports to Silicon Graphics Field
Service and availability reports to your local system administration team. You can also
send copies of all reports to a local log accoun. If you select manual mailing, the two types
of reports are created in the directory /var/adm/crash. You can then edit or filter the
reports, and then use the amsend command to send the approved reports.

The availmon software can be configured to compress and encode data. The receiving
agent (using the amreceive command) decodes, uncompresses, and stores the data in a
database at Silicon Graphics. Data encryption is recommended if it is not prohibited at
your site.

Viewing availmon Reports

The amreport(1M) utility is provided to review availmon reports and to provide statistical
availability information. This program can process local availability log files or received
aggregate availability reports (such as a site log file) from different systems.

The amreport utility shows the statistical reports and availability reports hierarchically
from overall statistics for all systems, a table of statistics for all systems (however, if the
input is a local log file, the above information is not provided), statistics for each system,
a table of all reboot instances for each system, and availability reports for each system.
See the amreport reference page for full information on this utility.

